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ABSTRACT

If {X(t),t€R} is a weakly harmonizable process,
coné}tions on the process are found in order that X(t)

= I an(t)X(nﬂ/a) for a suitable a >0 and coeffi-

n’-ﬂ

cients an(t) , the series converging in LZ(P)-mean.

Consequently the process can be determined by sampling
at fixed intervals nh, n = 0,z1,... , h=m/a>0 . A
corresponding result is also obtained for a more general
Cramér class. To carry out this analysis, it is neces-
sary to use the properties of bimeasures. Some aspects
of the bimeasure theory and its distinction from the
Lebesgue theory are included. This is used essentially
for the analysis of harmonizable processes, and has in-
dependent interest. ]

I. INTRODUCTION. Let (Q,Z,P) be a probability space
and LO(P) be the subspace of square integrable complex R
valued random variables on Q with means zero, i.e., »
XGL%(P) iff E(|X|%)<® and E(X) = 0 where E(X) = " 1
IQXdP , the expectation. A second order process '
{X(t),t€R} of interest in this paper is a mapping X:R

= Ly(P) and let r,(s,t) = E(X(s)X(t)) , r (-,*) being 0 |
the covariance function. The types of processes con- ' 1
sidered here are classified according to the form of
3 the covariance function r, of X . The process is
¥ »
i ]
-1-




said to be strongly (or Loéve, cf. [8]) harmonizable if
r, admits a representation as:

r (s,t) = IRIReiS"'it"'Fx(dx,dx') (1)

where szleR"C is a positive definite function of
bounded variation in the plane, and the integral is de-
fined in the standard Lebesgue sense. Here bounded var-
iation is understood in the sense of Vitali so that one
has

IF, | (RxR) = sup[izl >:|F (Ai,B NE
Ai cR BJj C R are intervals} <= , (2)

where Fx(A,B) denotes the increment, for A = (a,b]
B = (c,d] , given by

Fx(A,B) = Fx(b,d) -Fx(b,c) -Fx(a,d)-+Fx(a,c)
This is a generalization of the classical notion of
(weak) stationarity since, by definition, the latter is
a process whose covariance rx(-,-) is continuous and
depends only on the difference s -t ('invariant" co-
variance under translations of the time axis R ) so
that r_(s,t) = fx(s-t) and by Bochner's theorem the
continuous positive definite function Tr_, can be

X
uniquely expressed as:

i(s :)xG () (3)

for a positive bounded nondecreasing function Gx
Thus (1) becomes (3) if F concentrates on the diago-
nal A =1’ so that G, (h) :Fx(k,k') .

If T: LO(P) LO(P) is a bounded linear mapping,
and [x ,t€ER} is a stationary process, then in some
applications it is desired to consider the transformed
(e.g., filtered) process Y = TX., te€R. [Here and
below X, = X(t) are interchangeably written, for con-
venience.] However Yt is not stationary in most cases.
For instance, if T 1is a projection operator with a

£ (s- t) =
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finite dimensional range, then the [Yt,telR} is strongly
harmonizable but not generally stationmary. If T has

an infinite dimensional range (but T # identity), then
{Y,,teR} is generally not even strongly harmonizable.

It is weakly harmonizable in the sense that its covari-
ance function ry:(s,t) " E(Ys'f't) is representable as:

- ish-itn’ ¢
ry(s,t) fRfRe Fy(dx,dx ), s,t€R, %)

where F_:RxR=-~C 1is a positive definite function with
finite Fréchet variation. This means:

n n
I - Py .
IIFy” (RxR) sup{ iEl jE].aiaij (Ai’Aj ): Iailsl saie¢:
N Ai SR 1is an interval, i =
1,...,n} <= ., (5)

Evidently lle” (RxR) = |Fy| (RxR) €<= , usually with a
strict first inequality when the second is infinite.

But then what is the meaning of the integral in (4)?
This is generally a nonabsolute (hence not a Lebesgue)
integral and is taken in the sense of Morse-Transue [9].
Some of its properties are essential for the following
work and hence some aspects of this theory of bimeasures
determined by such F_ , called the spectral measure of
the process, will be given in the next section. Because
of its use in other studies on the subject and because
of independent interest, the work presented here will

be somewhat more than what is needed for our present
purposes. It is useful to remark that if [Yt,telR} is
any weakly harmonizable process and T 1is any bounded
linear mapping, then [TYt,tE]R} is also weakly harmon-
izable. These processes are particularly suited in ap-
plications because of such closure properties. Sec-
tion 3 contains a description of these processes, and
their integral representations. Since in applications
it is difficult (or expensive) to observe a process
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[Yt,tEIR} on all of R , one often wants to sample it
preferably at equidistant points nh, n = 0,£1,%2,... ,
and get a good approximation to the whole process in
such a way that there is no "aliasing," so that two

different processes shall not have the same realizations

at these points. Reasonably good sufficient conditions
on the spectral functions are obtained in order that
such sampling is possible for weakly harmonizable pro-
cesses. This requires a different technique than the
strongly harmonizable case. These results constitute
Section 4. Several related remarks are given in the
last section.

It will be seen that, once the representation the-
ory is embarked, one can include processes more general
than harmonizable classes. Such a generalization was
already introduced by Cramér [3]. Thus a process Z:R
- L%(P) is said to be of Cramér class, if the covari-
ance function x, of Z can be expressed as:

r,(s,t) = [p/R8, (8,})8, (E,X JF, (d\,dr) , (6)

where Fz:]Rx]R"G: is positive definite, and is og fi-
nite Vitali variation on each finite domain of R" ,
and (gz(s,-),selR} is a class of Borel functions for
which the (Lebesgue) integral satisfies:
JRIR8; (8:0)g, (8, X JF, (dr,dA") <=, seR . If g,(s,)) =
exp{isA} , and F, is of finite variation on the whole
plane, then the Cramér class reduces to the strongly
harmonizable case. A sampling theorem for this class
is also obtained, and it extends an earlier result of
Piranashvili [11]. It is possible to extend this ma-
terial if the variations here are replaced by Fréchet
variations, in these definitions. The existence of all
these processes is also discussed in Section 3 below.
Sampling theorems and their importance have been
noted in information and engineering applications. An

e
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early general and precise result for stationary processes
was obtained by Lloyd [7], and his result (the suffi-
ciency part) was extended in [14] for strongly harmoniz-
able processes, and another extension for the latter can
be found in [l11]. The type of sampling theorems given
below is influenced by the point of view (but not the
methods which do not extend) of [ll].

For a smooth sailing later on, the measure aspects
will now be discussed in some detail. However, a reader
interested in seeing the stochastic theory immediately,
and is willing to accept (temporarily) the properties of
bimeasures, can now go directly to Sections 3 -5.

II. ASPECTS OF BIMEASURES AND THEIR INTEGRALS. A start-
ing point for the study of weakly harmonizable processes
is to define the integral in (4). This will emerge from
the general theory of C-bimeasures developed by Morse

and Transue [9] but now their general study has to be
slightly restricted. To see what is precisely needed,

a brief account of this development will be presented
here since it is not available in the existing papers.
It will supplement [19].

Let 81,82 be a pair of locally compact spaces and
M(Si) be the space of continuous complex functions on
Si with compact supports, i = 1,2 . The concept of a
C-bimeasure of [9]) is as follows:

Definition 2.1. A complex valued bilinear mapping A
on the product space K(Sl)xK(Sz) is a C-bimeasure on
Sle2 if A(’,V):K(Sl)"G and A(u,-):K(Sz)-C are
relatively bounded linear functionals for each uexesl),
VEH(SZ) . [Relatively bounded A(‘,v) means that if
Kc S1 is compact and X (K) < H(Sl) is considered,
then A(-,v):X(K)~-€ is bounded.]
Since each such relatively bounded functional on x(Sl)

.
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is uniquely representable by a signed 8aire measure on

S1 , by the classical Riesz representation theorem and
then such a measure has a unique extension of being a
Radon measure by the standard theory of Bourbaki [1],

one refers to each such functional itself as a Radon meas-
ure, as is done in [9]. Given such a C-bimeasure A ,
one defines the integral of [9] as:

Definition 2.2. Let 'fzsl-'¢, g:SZ-*m be Baire func-

tions and A be a C-bimeasure on slxsz . Then (£,g)
is said to be Morse-Transue (or MI-, cf. (9], p. 482)
integrable if (a) £ is A(:-,v)- and g is A(u,-)-
integrable for each uGK(Sl),VGK(SZ) (the integrals are
denoted A(:-,v)(f) and A(u,-)(g) ), (b) the linear
functionals A(-,g):u*+ A(u, )(8), A(E,"):v = A(-,v)(E)
are Radon measures, and (c) the integrals A(f,')(g)
and A(-,g8)(f) exist and are equal. This common value
is denoted by

"

A(E,8) = (MT), [(£,8)dr = A(E,")(8) = A(,8)(E). (7)
515,

The reason for condition (b) in this definition is
that A(:,:) should be definable for measurable (f,g) ,
not merely continuous ones. However, as a consequence
of his work on vector measures, Thomas ([l7], p. 144)
has shown that this is actually redundant, and hence
(a) and (c¢) suffice in the definition. Although the
integrability concept of (7) is needed below, the
Bourbaki point of view of integration employed is some-
what inconvenient for our work. So an ensemble point
of view, due to Ylinen [19], will now be presented and
the results will be compared with the above.

Let (Qi,Si), i=1,2 , be a pair of measurable spaces
and ¢ the usual complex plane. Then a mapping B8:
lezz-c is termed a timeasure if B8(-,F) and B3(E,-)
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are og-additive for each Eezl , and FGZZ , respectively.
The Vitali and Fréchet variations of B are defined
exactly as in (2) and (5) where in (5) the sum now is

n n
replaced by | £ ZaiE.B(Ai,B.)I for disjoint collec-
i=] jal * ] J

tions {Ai}rl‘,{Bj}rf of I;,I, . It follows from classi-
cal theory (cf.” [4], IV.10.2) that [8{(Qy,0,) <=
always, though |8](Q;,2,) is not necessarily finite.
Clearly |[[8ll(A,B)=]|B|(A,B) . An integral relative to

B 1is introduced as follows:

Definition 2.3. Let fi:Qi-°C, i=1,2 , be measurable
functions and B:Elxzz-c be a bimeasure. Then (fl’fz)
is B-integrable if (a) for each Eez,,Fez, , fl is
B(:,F)- an £, 1is B(E, )-integrable in Lebesgue's
sense, so that fls(Ql,-):F - dI'lfl(wl)ﬁ(dwl,F) is a
complex measure on 22 and similarly sz(-,nz) is a

complex measure on Zy > and (b) fl is Bf (~,02)-int:e-
2
grable and f2 is fla (Ql,-)-integrable (in the Lebesgue

sense) and

J £y (W) e B(Qq,du,) = ]
q, 2 2°f 12 4

CTEATLI
12
@)

where the last symbol is, by definition, the common value
of the other two. .
The two integrability concepts introduced above are
related as follows. For simplicity, Q; = Si =R is
taken, but the argument is seen to be valid if R is
replaced by a o-compact Hausdorff space. 1

v £q(0q)B, (dw,,0,) =
Q11 1 f2 12772

Theorem 2.4. Let 8 be the Borel c-algebra of R , and
8:8x8 -C be a bimeasure. Then each pair fiEK (R), i=

1,2 , is 8-integrable in the sense of Definitiom 2.3,




and A:(f,£) r [ ! (£,,£,)d8 given by (8) defines a
) RR

bounded C-bimeasure of Definition 2.1 on X@®)XX@®R) .

Moreover, if (fl,fz) is any B-integrable pair, it is

also MT-integrable (relative to A ) and the integrals

agree: o
LL (558 = e [ (5y.8p)an )

On the other hand, if A:X@®R)xX®R)~C is a bounded (not

merely relatively bounded) C-bimeasure, then there ex-
ists a bimeasure B:8x8 -C such that each pair (fl,fz)

(from X@®)xX(®R) , gr more generally) of B-integrable
functions, is MT-integrable relative to A and the re-

lation (9) holds.

Proof. In proving this result several properties of B-
integrals established in [19] and those of MT-integrals
from [9] and [17] will be utilized. Indeed it is an
elaboration of ([19], Thm. 7.2) and complements some of
its statements.

Let @:8x8 ~C be a bimeasure so that ,B]@®xR)<=,

and let (f,g) be B-integrable. The definition of B8~
integrability implies that each pair of bounded Baire
functions is B-integrable (cf. [19], p. 126). So, if
u,véKR) , then (u,v) is B-integrable and the mapping
A:(u,v) h{lj;z(u,v)dﬁ is well defined and A 1is a

bounded bilinear functional. 1In fact, |[A(u,v)| =

18 ®R)luil_ilvll, where I-[i_ is the usual supremum
normon K@®) . Thus A 1is a bounded C-bimeasure, by
Definition 2.1. Consequently A(:-,v) and A(u,*) de-
fine bounded (complex) Radon measures on # , because
every og-additive function on the Baire c-algebra of a
o-compact space into a Banach space has a (bounded)
Radon extension onto its Borel c-algebra, by the stand-
ard measure theory. Using the same symbol A(',v) for
this extended measure, one has

RPN WY
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ACE, ) (v) = A(-,v) () -i]:f(x)Bv(dx,R) , VEX(R) ,
-iﬁ‘vmfs ®,dy) , by (8) since

(£,v) 1is B8-integrable, (10)

where the first equality obtains by definition of this
symbol (cf. [9]). Since gS®, ) is also a regular
measure on 8 , (10) shows that A(f,:) on X@®R) 1is a
bounded linear functional and hence defines a (complex)
Radon measure on 8 . So (10) holds if v 1is replaced
by any Baire function g , provided the integral on the
right side exists. Since (f,g) 1is B-~integrable, it
does exist by (8), and one has:

[ {(£,8)d8 = [g(y) B R,dy) = (A (£,dy) =A(E, ") (g)
RR R R

(11)
A similar reasoning shows that A(:,g)(f) exists and
equals i;“;(f’g)ds , so that A(£,-)(8) = A(-,8)(F) ,

and (f,g) 1is MT-integrable.

For the last part, let A be a bounded C-bimeasure
on K®)xX@®) . Then a pair of bounded Baire functions
(£,g) 1is MT-integrable as a consequence of ([9], Thm.
11.1), since A 1is a bounded ¢ -bimeasure. By the
theory of [9], for each bounded Baire function £ or
g, A(,8) and A(f,') determine (complex) bounded
Radon measures on 8 . If we define a function B8 :8x8 =
€ by B(E,F) = A(Xg,Xg) , then 3 1is seen, after a
standard computation, to be a complex bimeasure (hence
bounded). 1If now A’':(h,k) r-iJ;%(h,k)dB is defined for

each pair of bounded Baire functions (h,k) , then by
the first part A’ 1is a C-bimeasure and A'(XE,XF) =

A(Xg,Xp) so that A (u,v) = A(u,v) for u,v in K@) .

The extension procedure then shows that A’ = A and
(9) holds. This completes the proof.

e ol
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Remark. There exist (unbounded) C-bimeasures A on
KX®R)xK®R) (or any noncompact g-compact space S in
place of R ) such that it induces a complex bimeasure
8 , which is thus bounded, and for which (9) holds for
all B-integrable pairs (f,g) ; but there exists a A-in-
tegrable (not bounded) pair (h,k) which is not 8-inte-
grable, i.e., (8) does not hold. An example of this
phenomenon is given in ([19], Remark 7.3). Thus in the
above theorem, it is essential that A remains bounded
after it is extended from K(Sl)xK(SZ) to more functions.
The integrability of a pair (£f,g) relative to a
bimeasure B as in Definition 2.3, and hence for the
MT-integral (by the above theorem), is not absolute.
Indeed, the integrability of (£f,g8) for B8 does not
necessarily imply the same for (fo,gXB) R AEZI,BGZZ R
in contrast to the Lebesgue theory. This is seen from
the following example. We use the fact that the theo-
rem is true if R 1is replaced by a c-compact set.

Example 2.5. Let the underlying spaces S1 = S2 = Z
(the integers), I = P(Z) the power set. Let
3({m},{n}) = (lml+|n|)°4 for |n|+|m] # 0, = 0 other-

wise, m,n€éZ . Now LI (lmf+|n|)'4<= so that for any
mn
E,F&(Z) we can define B(E,F) , and extend it to P(ZZ)

by additivity (with values in RT ). Then one can verify
that (8| (Z,2) <= , i.e., (2) holds. Let f£(x) = g(x) =

x , x€¢Z . Then for each E < Z , we have
JE)B(ax,{ml) = I a(nl+n)™, mez .
E n€E-

Since the series is convergent, £ 1is 8(-,F)-integrable
for each FeP(Z) , and

[£(x)8(dx,F) = =  ca(lm|+a])™* .

E n€E-{ 0} meF
Similarly :Fg(y)B(E,dy) exists. Also for each F < S2 =
z , :
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PSP = [E@B@Ex,F) = £ I n(lml+a)™ =0
: S1 m€F n€Z-{ 0

and likewise Bg(E’SZ) = (0 for each E c §; = Z . Hence

(£,8) 1is B-integrable and fslfsz(f,g)dﬁ =0 .

Now let -A-= B = Z' . Since B(AF) = if(x)ﬁ(dx,F)

-4 -} - mn
= L ZIn(otjm|)™ ,and I = ——— ==, so
. m€F n21 m=] n=1 (min) ’
ig8(y)gB(A,dy) does not exist. But B(4,-) =

XAfﬁ(sl,-) . Hence ISZ(ng)(y)foﬁ(Sl,dy) does not
exist. Thus (fo,ng) is not integrable in the sense
of Definition 2.3 even though (£,g) 1is.

Now by Theorem 2.4, if A 1is the induced C-bimeas-
ure by 8 , then (f,g) 1is also MT-integrable and its
integral vanishes by (9). But again (fo,ng) is not
MI-integrable as follows from a similar computation.
Thus the pathology is present also for bounded C-bimeas-
ures.

To eliminate this unpleasant behavior, we shall now
strengthen the definition of integrability relative to
a bimeasure in such a way that all bounded functions are
again integrable. Thus we shall restrict the (unbounded)
set of integrable pairs of functions, but the bimeasure
itself is left relatively unrestricted. However, it may
be of interest to note that [B,R®R)<|3|®R) == can
happen even if 38 1is a positive definite bimeasure.
Counterexamples illustrating these points are not ob-
vious. Using a modification of an example due to H.
Helson and D. Lowdenslager, an example was discussed in
(13]. 1It uses a deep result, due to S. Bochner, on the
planar extension of the F. and M. Riesz theorem on abso-
lute continuity of measures. A general counterexample
can also be obtained by a nontrivial modification of
that of ([2], p. 840) to show that |3 R®R) < |3| RR)
= » holds when 3 1is a bimeasure which is not

e PRI SN W I SN G |
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:‘ necessarily positive'definite. For brevity, the details !?
of this will not be included here. '
_ To avoid the troubles of Example 2.5, let us intro-
.h duce the following: ‘j
Definition 2.6. Let (Qi,Zi) be measurable spaces, ’
fi:Qi-G be measurable functions, i =1,2 , If 8:
lezz-C is a bimeasure, then the pair (fl’fZ) will
be termed strictly B-integrable if:

;‘ - (a) fl is B(-,F)- and f2 is B(E,-)-integrable
i for each EGEI,FGZZ , so that fls(E,-):Zz"C and

L_ sz(',F):Zl-'c given by flea»:,a) = :Efl(wl)a(dwl,a) ,
. BEZ, , and sz(A,F) = Jpfy(uy)8(A,dw,y) , A€T; , are

complex measures for each E€x,,FeX, , and
(®) £, 1is B¢ (-,F)-integrable for each Fez, ,
2

and £, is fIB(E,-)-integrable for each E€Z, , and
,:’Efl(wl)afz(dwl,r) - J‘Ffz(mz)fls(z,dwz) holds for

EGEI,FEZZ . When these conditions obtain, the integral
is denoted by

» % = -l
oy (F1,Ep)d8 $ gz(fol,foz)dB L8 (1)Bg (duy,F)

(12)
It is not difficult to verify that each strictly

B-integrable pair is 8-integrable in the sense of Defi-
nition 2.3 with the same value. If u:(A,B) =~
P 0
Jlesz(fol,xsz)dB , Ae:l,Bezz and (fl’fz) is
strictly 8-integrable, then u 1is a bimeasure on Z1%XZy
since ( =« )

£,,5,

w(A,B) = d-"Afl(wl)sz(dwl,B) , A€Z, ,BEZ, .

It may be easily seen that the results on 8-inte- : ]
grability given in ([19]), Thms. 5.4 and 5.6, Corol. 5.7) p
are also valid for strict B-integrals. 1In particular, 1

[ oo d
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ed measurable pair (f,g) 1is always strictly

B-integrable. The following ''change of variables' for-
mula holds:
Theorem 2.7. Let (£f,g) be strictly 8-integrable on
{(Qi,zi),i-l,Z} for a bimeasure 3 on £,xZ, . Let
E 3 " ¢ . -
u(A,B) ,Qlénz(fo,ng)de , A€L),Be€T, . If h:q, ~C,
k:Qz-'G are bounded measurable functions, then the fol-
low1ng€:rmula holds: ‘:gain o= “f,g) .
ol (fh,gk)dB = [(h,k)ds |, Aez, ,BEL, . (13)
AB AB
Proof. As noted above, u 1is a bimeasure on lezz .

Define a 1
measures

where k

inear functional ké on the space of scalar
ca(Qz,Zz) as:

kp(r) = j‘Fk(wz)x(dwz) , FeZ, , A€ca(Q,,I,),
is given in the statement. By the structure

of measurable functions there is a sequence of step

functions k -~k pointwise, lknj < |k| , and so let
2
n
k, = % blx Then for each E€T, , one has
j%gn 1
j=1 3 8]
3k (E,F) = ‘i:(gk) (v5)8(E,dwy) , by definition,
- umf(gkn)(wz)e(z,dwz) , by the dominated con-
n—= F
vergence,
£
n
- £ by NBT
iisjal jSS(E’F 3

Hence usin

:(Sk)
F

i_if,;kn(wz)ﬁg(E,dwz)

.l-;kcwz)sg(n,dwp = k(B (E, "))

g the standard theory ([4], p. 180),
(15) g3 (E,du,) = ké((.f)g(wpfs (E,dw,))

= ko (C£(wqy)3_(dwy,*))
o 17"g 1
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=[£G By, ), by (6],
p. 324),
= Ef(wl)ﬁgk(dwl,F)

This shows that (f,gk) 1is strictly BS-integrable and
further

{;{-* (£,gk)d8 = k(4 (E,)) = [k(up) (B, dup) =y (E,F) . @4)

By a similar argument, one shows that (fh,gk) is
strictly B-integrable and

n ok -

JEJ; (fh,gk)ds = J];h(wl)uk(dwl,p) =
This is (13) and the proof is complete.

The corresponding statement for the bounded C-bi-
measures and MT-integration may be stated as follows:

J o (h k)d“
EF

Theorem 2.8. Let (Si,Bi), i=1,2 be og-compact Borelian
spaces, and f£,g be Bl,Bz-measurable scalar functions.
Let A Dbe a bounded €-bimeasure on S xS2 . Then the

pairs (fh,gk) are MT-integrable relative to A for
all bounded scalar Baire functions h,k on §,,5, , Liff

(fo,ng) are MT-integrable for all A€8; and Bed, .

The proof of one direction is immediate, and the
converse is similar to the preceding result using the
interplay (of Bourbaki's) between the bounded linear
functionals and the (bounded) Radon measures. The de-
tails are omitted.

The following consequence of Theorem 2.7 will be
noted for applications.

Y SV N

Corollary 2.9. Let (S;,%;), i=1,2 be measurable spaces

and B be a bimeasure on leaz into € . Then one
has:

(1) A_pair (f,g) 1is strictly 3-integrable iff
the pair (|£],[g]) is.

(ii) 1I1f the fi:Si-‘C are measurable, { = 1,2 |
and £l , |£,]=lgl and (f,8) is sericely

A e aan "
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B-integrable, then so is <fl’f2)

(1ii) If (f,g) is strictly B-integrable, fn,gn
are sequences of measurable functions, Ifh] < | £}
lg | = lgl and fn-f ,» 8, ~§ pointwise, then (E,8)
is strictly B-integrable and

rr*(E,8)d8 = lim lim[ [(£ ,8,)d8 , E€B),Fes, , (15)
EF m=n=EF O

and similarly if m,n are interchanged in the limit.

Proof. (i) and (ii) are immediate. Regarding (iii),
by (ii) (£,8) 1is strictly B-integrable. Further,

%i;*&,gme - If(x)fz-(dx,m

- limJ £ (x)B~(dx F)
n—-= E

- Lin[§(y)¢ 8 (E,0y)

= limlim.,gm(y)f 8 (E,dy)
n=eo m—~=F

= lim lim[ [%(£_,g_)de
n== o= E F n’Em

= lim lim[ j‘*(fn,gm)de , by a similar argu-
m=o n== EF
ment.

This is (15), and the result follows.

In exactly the same manner, if the (XAf,XBg) are
MT-integrable relative to a C-bimeasure A:x(sl)xx(sz) -
¢ , then the above three statements hold for the MI-in-
tegrals, using Theorem 2.8.

These results will be sufficient to present the
work on harmonizable processes and their extensions to
Cramér classes.

III. INTEGRAL REPRESENTATIONS OF PROCESSES. The pre-
ceding analysis justifies the integration in (4) and
one uses the strict 3- (or F_- in (4)) integrability.
In what follows only this strict integral will be used
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and the word ''strict' will be dropped hereafter since no
other concepts will be employed. In (4), the integrand

is a bounded continuous function. If B8 1is restricted
to functions with Vitali variation finite, then the
"strict' and the 'ordinary" (those in the sense of Defi-
nitions 2.2 and 2.3) integrals coincide.

The purpose of this section is to show that every
weakly harmonizable process admits an integral repre-
sentation; in fact to show that it is the Fourier trans-
form of an L%(P)-valued (or a stochastic) measure. Let
us present the result in a form which applies to the
Cramér class also, extending the work of ([5], Sec. 4.4).

Let rRR-~C be a positive definite continuous
function. It is then a covariance function in the sense
that there exists a probability space and a stochastic
process {xt,tem} on it with the given r as its co-
variance function. To see this let SERRERLN be n
points from R , and note that (r(ti,tj),lsi,jsn) is

a positive definite matrix for each n . Let F, c
1,0-0’ n

be a Gaussian d.f. with mean zero, and this matrix as
its covariance matrix. Such d.f.'s clearly exist on R"
for each n21 . The family of all these d.f.'s has

the consistency property, i.e., (i) limFt t:(x]_,...,xn)
x 4 ...’ n

1:
n
- Ftl’ ceny tn-l(xl, RN )xn-l) 9 and (ii) Ftilgnuo;inétil’...,xj-n)
= Ftl,---,tn(xl""’xn) for any permutation (i;,...,1i))
of (1,...,n) . It then follows from a fundamental re-

sult of Kolmogorov (and Bochner) that there exists a
probability space (Q,Z,P) , and a real process {Xt,tER}

on it such that P[xt1<x1,...,xtn<xn] = Ftlru,ﬁfxp"”xn)'
Here the finite dimensional d.f£.'s are the given F's
so that it is Gaussian and hence the covariance function

is the given r and mean function is zero. (For a




proof of this statement and related material on the ex-
istence of such processes, see [12], Sec. 1.3.) This
result also implies that the covariance functions given
by (1), (4) or (6) are in fact such functions of con-
crete stochastic processes and not some fictitious ob-
jects, and the theory thereby gains importance for ap-
plications. Consequently, if Fz:RxR-C is a positive
definite function which is only of locally finite
Fréchet variation in the sense that on each compact
rectangle IxI cR®R , F, satisfies HFz{:(IxI) <o 30
that (5) holds on IxI (but HFZII ®R) = @ is possi-
ble), let {g,(s,*),s€R} be a family of Baire functionms
on R=C . Suppose that

o2 8 (SMBEINF (@A) <o, sCR , - (16)

where the symbol denotes the strict integral relative to
the (local) bimeasure F, . For instance each gz(s,-)
can have compact supports. It is clear how the inte-
gration theory of the preceding section can be adapted
to this situation with a modification of the classical
methods (cf. e.g., [1]). 1If r, is defined, for a
family of Fz-integrable Baire functions {g(s,-),s€R},
as

r,(s,t) = [ lg, (s, )G (E,X JF, (d\,dh') <=, (17)
RR

then it is a covariance function. The corresponding
process {Zt,tEIR} with this r, as its covariance will
be called weakly of Cramér class. This is the most gen-
eral nonstationary family that can be studied with these
methods. 1If gz(s,x) = eisx , then this reduces to the
weakly harmonizable case, provided the Fz is a bi-
measure on R®R (i.e., not merely locally).
To present the general representation, it is also

necessary to recall the integral of Dunford and Schwartz
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([4], Sec. 1IV.10) of a scalar function relative to a
vector measure in the form needed here.

Definition 3.1. Let (R,8) be the Borelian line and

(2,z,P) be a probability space. 1If LZ(P) is the
usual Hilbert space on (@,Z,P) , then a mapping Z:8 -
L (P) which is c-additive in the norm topology of
L (P) 1is called a vector measure, and a stochastic
ﬁfasure if also E(Z(A)) = 0 for each Aeg8 . 1If fn =

£ anx

AD A?GB is a step function, then, as usual, we
i k

let gB = ff dZ = iZ(A?.F’B) , BEB (which is seen to
i-l
be uniquely defined) and if f -f pointwise, and

{g ,nzl} < L2 (P) 1is a Cauchy sequence for each Be8 ,

then the unique limit g° = lim‘ffndz is denoted [fdz
n-= B B
= lim f dZ , B€R8 , called the Dunford-Schwartz (or D-S)

n—= B
integral.

This concept is a specialized form (to LZ(P) ) of
that given in ([4], IV.10.7) where it is shown that the
integral is uniquely defined, does not depend on the
sequence used, and is linear. Taking Z (') as the sto-
chastic measure, the integral was defined differently
in [3], [8] and others, but it can be seen to be a spe-
cialized version of the above definition. If Z:B(K) -
LZ(P) is a stochastic measure for each compact K R
(B8(K) 1is the trace o0-algebra of 8 on K ), so that
Z will be a stochastic measure on the $-ring BO cs
of bounded Borel sets, then again the D-S integration
extends to this '"local' situation with only simple modi-

fications. (A special development to this case was given
by Cramér in [2] to use it with (6); and a similar result

holds with (17).)

We can now present a general integral representation

for processes whose covariance is of the type (1), (4),

_ - _a DRI

O |
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(6) or (17). This is essential for the sampling theory
of the next section and the interplay between the D-S
integral and the strict integral of Definition 2.6 plays
an important role in the present work.

Theorem 3.2. Let {Xt,tE]R] be a second order process
on (Q,Z,P) , weakly of Cramér class, in the sense that
E(Xt) = ) and its covariance function r, 1s repre-

~sentable by (17) relative to a positive definite local

bimeasure F, and a family of functions {gx(s,-),seli}
which are strictly Fx-integrable. Then there exists a
stochastic measure Zx:ao-L (P) such that

(1) E(Z,(WZ(B)) = F,(A,B) , A,Bes,
(11) X(t) = JR8,(E,A)Z2 (dr) , tER , (18)
where Bo is the 8-ring of bounded Borel sets of R ,

and the integral on Bo in (18) is in the D-S sense.
If F, 1is a bimeasure on K, then 8, can be replaced

by the Borel c-algebra 8 and . J"*g (s,V8.(s,\)F_(dr,dr")

<=, s€R, for any bounded Baire family (g (s,-), s€R}.

Conversely, if {X(t),t€R} is a process defined by
(18) for a class {gx(s,-),selk} of D-S integrable func-
tions, then [Xt,te]R} is weakly of Cramér class, and
the gx(s,-)'s are Fx- integrable strictly, where
Fx(-,-) , given b i), is (locally) a bimeasure on 0°
the 8-ring of bounded Borel sets of R .

The special case of importance here is when the
process is weakly harmonizable, or of Cramér class (6).
In the latter case F. is of finite Vitali variation
on each compact rectangle and the integral with Fx is
a planar Lebesgue-Stieltjes integral. In this event,
the result reduces to the representation established by
Cramér himself in [3]). The proof of the above theorem
is an extension of [3] using the theory of bimeasures
given in the preceding section. The details have been
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spelled out in ([13], Sec. 3), and will not be repro-
duced here. Let us state the harmonizable case sepa-
rately for ready reference and to use it in Section IV.

Theorem 3.3. Let [Xt,telk} be a process with E(X,) =
0 and E(lxtlz)_$K0<~ , t€ER . Then it is weakly har-
monizable relative to a positive definite bimeasure Fx
on 6x8 , {ff there exists a stochastic measure Z :8 -
EI(P) such that E(Z (A)Z (B)) = F,(A,B) , A,B€B , and

ier
e " IR
where the integral is in the D-S sense. The process is
strongly harmonizable if F_ , related to 2 of (19),

X z (d) , LER (19)

is of finite Vitali variationm, IFxl RR) <= ., In either

case Xt is uniformly continuous in t with the norm

topology of the range space L“(P) .
The weakly harmonizable processes were also called

'V-bounded" by S. Bochner who was the first to introduce
them into the stochastic theory in 1954, and later (in-
dependently) were again defined by Yu. A. Rozanov in [16]
with an indication of the need for integration akin to
Definition 2.6. A comparison (and equivalence) of these
concepts and other characterizations are given in [13].
The representation in this case has also been obtained
by Niemi ([10], p. 35) by a slightly different method.
But he was the first to recognize the use of MT inte-
gration in this study with V-boundedness.

If in (6) or (17) the function Fx concentrates on
the diagonal of R? , then one has Fx(k,k') = éxszx(X)
{8,y ¢ 1s the Kronecker delta] and so

r (s,t) = ‘R8, (8,8 _(E,X)G, (d\) . (20)
Processes for which T, has this special property are
said to be of Karhunen class. If gx(s,X) = eisx then

this reduces to the (weakly) stationary case. Thus a
harmonizable Karhunen class is simply stationary. 1If

Sdhdede ri
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this happens in (18) and (19), the stochastic measure
has the additional property of orthogonal increments,
i.e., E(Zx(A)Z;(B)) = G,(AMB) . In all these cases F
(or Gy ) the positive definite bimeasure representing

X

r, is called the spectral measure of the process. This
function plays an important role in the sampling results

of the next section. 1Its significance for this problem
is further pointed out in the last section. Theorem 3.2
for the Karhunen case becomes simpler, and this is given
in ([5], p. 201).

IV, SAMPLING THEOREMS. Since it may be costly or dif-
ficult to observe the whole process, it is desirable to
sample the observations at fixed intervals. However, by
regarding our process as a curve in the Hilbert space
LZ(P) , 1t is clear that two essentially different curves
(or processes) can pass through a fixed set of equidis-
tant points. This is usually called the '"aliasing'' prob-
lem and it is desirable to avoid this by choosing the
spacing unit carefully. Thus the sampling problem is to
find conditions on the characteristics (or the spectral
function) governing the process such that it can be de-
termined from a countable set of observations. 1In other
words, 1f L(X) = SplX,,t€R} < L?(P), and m(x) =
EETXti,ti are points at which the process is to be ob-

served} , then LX) =h(X) . 1If t, = +hn where h >0
is the unit to be chosen, then it is called periodic
sampling, and if {t_,n21} is a bounded infinite set of
distinct values, then it is nonperiodic sampling.

For the classes considered in the preceding section,
the process characteristic is the spectral function by
which one classifies the process. So the conditions
should be on such a function. For the periodic sampling
of weakly harmonizable processes, the following general

' q
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result, called a sampling theorem, holds: y

Theorem 4.1. Let {Xt,tE]R} be a weakly harmonizable
process with zero means and a spectral function F, re-
lated by (4). Given ¢ >0 , there exists a bounded
Borel set A (=A,) SR such that

’ [o]
,,"AcfAch(dx,dk ) < efb A =R -A,

and if 99 = diameter of A , then for any @ >0, one

".'."Y_, v

. 2 2
has (with [X_° = E(|X.|°) ) an n(=n_ ) such that
?

1%(e) -X_(8)]| = c(B)al(a-ogmi t+e , (21)
X
k| n
& where X (t) = kZ a, (t;a)X(kn/a) , t€R, and 0<C(t) <= .
3 ==n
4 - is bounded for t in bounded.sets. The coefficients
L ak's may be taken to be:

O 8 (t;a) = SIACEskD) (22) )y

1f the spectral function F, has a bounded support,
then we can set ¢ =0 in (21).

Proof. Since [Xt,telR} is weakly harmonizable, there

E is a stochastic measure ZX:B-L_Z(P) satisfying (19), '
& and such that F_(A,B) = E(z (A)Z,(B)) . Also
- ~ ’ ’ w2
\ 2 XAy Ay FR @) =lin g oy )z, @)
4
)

’ -1z, @1, ustng _
1 ((41,IV.10.10) ]

- '
o iﬁpx(dx,dx ) . (23) '_]
' Hence given ¢ >0 , there exists n, ('-no(s) ) such :
A that nzny =
K po ty ’ 2 ’1
- V. Fx(dl ,dh ) -, X[_n’n) (X [_n’n)(X)Fx(dl,dk') <€/ 256 . - 1

RR RR

: (24)
g
)
e ’
{
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This may be written alternately in the following form

which also obtains from the fact that 1 -X[-n n)lO

boundedly and the same theorem of [4] as in (25) applies:
[ IE (a,a) = I -x, 0nz @)% = iz, @aS0%=0
nn (24')

= - " [
where A [-n,n) so that for A one has "zx(AnO)“

0
< ¢/16 by (24’'). (We can actually choose HZxH(Ag ) <
¢/4 by [6], Thm. 3.5 here.) That this fact holds

for vector measure more generally is proved in ([6],

Thm. 3.5).
Consider
x(e) = JetPz@n) = [ ez (@) + [ eIz (ar)
R A Ac
o ng
= Xl(t) +X2(t) (say). (25)

Writing Zl =2,(A N-) and 22 = Zx(Ai n.) , and not-
0 0

ing that these are again stochastic measures, it fol-
lows that X1 and X2 are also weakly harmonizable.
Moreover,

1K ()X ()] = 1%, () = | [ ez oyl <1-jz 1 a3,

AC
%o
<4 SupiiZX(E)ii se/4 , by ([4],
ECAE
IV.10.4 (b)) (cf. also [6],
Thm. 3.5). (26)

Since, if ft(x) = eitx , ft(-) is an entire

function of exponential type (with finite exponent [ =1
here]), the classical results on approximation imply
(cf£. [18], Sec. 4.3; these are given in the form needed
by Piranashvili [10], but the present one is simply the
classical Rotel'nikov-Shannon formula, cf. [5], p. 204)
with 2z = );+iu; and 992 1ng for any a>0q ¢ 2T,
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. km
. n sina(z- =) L.(z)a
iz . km Q 0
e %t - 1 explirn==) - < = @27
k=-n e a(z- —l;n) [ (@-04)n

where Lo(z) is finite for 2z 1in bounded domains in
the complex plane. (A more general form of this esti-
mate for any entire function of finite exponential type
appears in the proof of the next result.) Define

X, (t) by:
o

n; : ko
0 sina (t- =—
X () = £ x(& = (28)
0 k=-n’0 a(t- ?)

Taking ak(t;a) as in (22), it is asserted that this
an(t)-process satisfies (21), it My>n,-

For, let 8 (z) be the nonnegative left side

quantity of (27). Then

mp ko
1x(e)-X_, () = | [(el™- r e ®ap(ria)Z @)+
0 A_, k=-n’o '

n
0
sz(t)-xz’nb(t)ﬂ , using (25) and (28)

with x2,nb in place of an if X

is replaced by X2 H

= 8 (E)1IZ i (Anb) + 1%, (£) +Hx2,(5%:l , by
th? ;riangle inequality and ([4], IV10.7)
L,(t)a
0 € '

s W(ZXHCR) +z'+1[X2’n6(t):l , by (26)
and (27). (29)

Now consider,

9

1%, . (©)] =1 £ a (e;0)%,ED)]
2,0y k== k 2Va !




n’ i km
=IfC = e %a (t;a))Zy(an)i
R.k--nb
ng kT
ssup | L e %a(t;0)]iZi®)
AER k=-nb
< Lo() by (2 26
U-+(;:;;;ﬁ§5 , by (27) and (26)

s [1 “'%‘]zi“ §8€' , 1f np = (-Z-I%itoi)v"a'
Substituting this in (29) one gets (21) with C(t) =
Lo (0) 21 )

If the support of Fx is enclosable in a compact

rectangle, then for a suitable ng it will be in

noxAno and hence Xz(t) =0 . Thus ¢ =0 1is possi-
ble in the above estimates. This completes the proof.
Remark. If the process is strongly harmonizable, then
F. has finite Vitali variation and the analysis proceeds
with Lebesgue integration, and the result can e deduced
from [11]. However, in the weakly harmonizabie case,
this is not possible and the vector (or D-S) integration
in LZ(P) and its relation with the MT-integration of
bimeasures must play a central role.

To illuminate these ideas further, we present an-
other (periodic) sampling theorem for some Cramér class
processes. Recall that a process {xt,cem} is of weakly
Cramér class if it has means zero and its covariance
function r. admits a representation as (17) relative
to a spectral measure function Fx , of local finite
Fréchet variation and a family [gx(s,-),selR} of F,_-
integrable complex functions. Then by Theorem 3.2, the
Xt process admits an integral ;epresentacion (18) re-
lative to a o-additive Z:Bo-L (P) , the integral being
(an extended) one of D-S type. In a related terminology
®,8,8,,2) becomes a "semi-standard quasi-measure space'

|
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(cf. [6], p. 210) and the integral becomes the same vec-
tor integral of [6]. For the following, the g(s,\)'s
will be assumed to satisfy two growth and smoothness
conditions:
(1) each g(:,\) can be extended to be an entire
function, \€R ;
n
=22 *) =
(11) 1f ¢, () azn(z,)\)lz,,o , then ¢ ()
lim sup [lcn(x)lll/nsco<= , and there is an
n—.

integer m=0 , such that
*
|g(z,1) | sLW) A+ z[Dexplc (W) yl} , z=x+iy .

In the preceding case g(t,\) = elth , and this

satisfies (i) automatically. Regarding (ii), c*(x) =
Ix] in that case. So there is such a gp<= only if
the \'s vary in a compact set and this will obtain if
Fx has a bounded support. In the present case, if the
F. 1is not restricted, then the g(s,-) should have com-
pact supports. This is reasonable in the Cramér class,
and is one of the reasons for this generalization. With-

in such a framework, the following (periodic) sampling

~ theorem holds:

Theorem 4.2. Let {X(t),téR} be of weakly Cramér class
with its g-family satisfying the growth conditions (i)

and (ii) above. Suppose that L(:-) in (ii) is strictly

integrable relative to the spectral measure Fx . Then
for each a>oo , if Xn(t) is given by:
n - . q -
xn(t) = T X(E) sin(at kﬂ)Sln Bct kﬂéﬁz , (30)
k=-n ¢ (zt-km)8d(t-kn/a)

where q2m , and B8 < (a-co)/q , we have for a constant
Co(tsQ»Q) <=
1X(e) - X, (0)] s Cy(t,a,q)/n . (31)

In other words {X(km/a),k=0,+1,%2,...} spans the same

A
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space as {X(t),teR} .

Proof. The idea of proof is similar to that of the above
theofem, and we can quickly sketch the argument. The
key again is the approximation result from function
theory. This is based on a theorem of M. L. Cartwright
(c£. [18], p. 186) as modified in Piranashvili ([11],

p. 648). By this work, one has

n . - Qa ..
|g(z,r)- E g(%F’x) sin(az-km)sinds (z-kn/a),

k=-n L (@) (az-km)89d (z-kr/a)
L(\)L
< .(4 . °_~[ (%)q + (%)q-m] , (32)

89(a-0-Bq) ™
where L(:) 1is as in (ii) of the growth condition and
L (z) 1is a positive finite number for =z in bounded
sets of the complex plane. So if Xn(t) is defined as in
(30), and ¢ _(t) =X(t)-X_ (t), then, if Ivn(z,x)l is the

left side quantity , L(k)hn(a,z,q) the right side,of (32)

Ca () = fgv, (£,1)2(dr)
and |vn(t,x)| <L(A)-h_(a,t,q) which by hypothesis is
Fx-integrable and which in turn implies that L(-) 1is
integrable for Z(:) . Hence by ([6], Thm. 6.11l(e)),
one has

lg ()i s 4suplIlfL(A) b _(a,t,9)Z(dr) ) :Ae8)
A
4L (t)

* e-g-8 )'%[(%)q‘*(%)q'ml'sup{ LO)Z(@) a8
0=
L () )

"My @U@ (say). (33)

389(@-c-8q) ®
The right side -0 as n=« for t in bounded sets,
a >0y . .Setting Cy(t,a,q) as the coefficient of n~
in (33), (31) results and completes the proof.

Without doubt, this result can be extended to get
an ¢-approximation by relaxing some conditions, to match
with the above theorem. We shall not go into such a
formulation here. Instead some related remarks will be

1
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given in the final section.

V. FINAL REMARKS. 1. For stationary processes, the
spectral measure F is real (and positive) and a more pre-

cise result can be obtained. A characterization for a
periodic sampling theorem is obtained by S. P. Lloyd (7]
involving only the support of F . namely its translates
should be disjoint when the translation is suitably re-
lated to the sampling interval h(=m/a) . An extension
of that result for strongly harmonizable processes can be
formulated. The sufficiency of it has been given in [14].
It was stated there without proof that the converse also
holds. This was clearly an oversight and tbhe problem is
still open, i.e., if a periodic sampling theorem holds for
a (weakly or strongly) harmonizable process, describe the

precise property of the support of the spectral measure.
For this reason in the preceding section only sufficient
conditions are considered which however are the most use-
ful ones for applications. 1In (11], independently of [14],
the method based on approximation theory, of functions of
a real variable, was presented. The underlying ideas ex-
tend, as shown here, though the method of proof of [11]
does not generalize. The vector integration, and the
bimeasure theory are useful in this extension.

2. As the above discussion indicates, historically
the philosophy of sampling theorms for processes is to
analyze the behavior of the spectral function where it is
available. However, one cannot always consider processes
having spectral functions as in Section 1. Then this
type of sampling theory becomes meaningless. Instead one
can consider some approximations from a different point
of view. For instance most second order processes admit
their covariance representation, called ''generalized

P W W
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triangular covariances,' extending (20) in which R is
replaced by a more complicated set. This may be stated
as follows. Let T be a subset of R (=R 1is possible)
and r( ,') :IxT = € be a positive definite mapping. Con-

sider a space Ho c Tc , called the reproducing kernel in-

n
ner product space: fGHo iff £ = Zlcir(si,-) , ciEC .
i:
m
If also g=¢ djr(-,cj) EHO , then introduce the inner pro-
=]

n m

duct <f,g>= T I ciaj r(si,tj) . This is well-defined
i=1 j=1

and is an inner product. If ¥_ 1is the closure of Hy

in this inner product, then ﬁr is called the Aronszajn
space. This is separable if for instance r satisfies a
smoothness condition. Let (R, 8) be the usual Borelian

line, Q@ = RxZ , L =83pP(Z) . Then the following re-
sult holds:
Proposition 5.1. let r:TxT =~ ¢ be a covariance

function such that the associated Aronszajn space ¥. is
separable. If (Q,Z) is as above, then there exists a
Lebesgue-Stieltjes og-finite measure v on & and a

measurable family of complex functions {¥(e,-), teT}
such that

r(s,t) = g';ws,m)ﬂ—c,w)v@w) , S,tE€T . (34)

The actual structure of ¥'s and v as well as the
proof of this result are given in ([15]), Sec. 6.2) . But
the jy-functions do not generally have any of the proper-
ties of the g-functions of the last section. While v
can be regarded as a ''generalized spectral measure' of
r , it is hard to relate these to those of the process
X , as in the preceding theory. This is why the consid-
erations there were given to a subclass.

3. One can consider nonperiodic sampling theorems
also. Let X(t) be of weakly Cramér class relative to

doddn,
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a family {g(s,.),s€R} so that (17) holds. Suppose
that g(-,A) ,\€R , is analytic and g™ (s,.) 1s
strictly F .- integrable for each s€RR and n21 where
F, 1is the spectral measure of X(t)'s. This implies
through (15) and ([4], Thm. IV.10.8) that {X(t),t€R]} is
a second order analytic random function since the co-
variance rx(-,-) is infinitely differentiable. Using
the fact that an analytic function is uniquely determ-
ined if it is known at a countable sequence of. points
which tend to a limit point, one can deduce the sampling
theorem of the following type as in ([14], p. 68): If
{tn,nzl} € R 1is an infinite bounded set of distinct
points, and X(t ) 1is known at each "time" t,, where
the g(s,-)-set satisfies the smoothness conditions noted

above, then the samples [X(tn),nzl} also determine the
process. A proof of this statement will be omitted since

it can be constructed from the above remarks easily.
4. It is possible, in many cases, to put con-
ditions on the covariance function T of a process X

such that it admits a Mercer type series expansion. This

in turn easily implies an orthogonal series expansion of
-«

X(t) = £ a (t)f , where (fn,nzl} is an uncorrelated

n=1
sequence of random variables each with mean zero and unit

variance. The partial sums of the series can be used as
the '"'sampling sequences.' Here the problem of computing
the "coefficient functions' an(') is nontrivial, and
this approach has other drawbacks. We therefore do not
consider this set in the general format of the sampling
theory of random processes, which is based on the
Kotel'nikov-Shannon type series. Such expansions,
however, have utility for other problems.

5. Finally, formulas (1) and (3) show, in case

G, are absolutely continuous, that F; and G;

Fx’ X
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are Fourier transforms Ex of T, and so one may seek
conditions on these to obtain some ''sampling theorems.'
These are very special assumptions and for (4) or (7) no
such assumption is meaningful since the respective inte-
grals are not in Lebesgue's sense. From all these consid-
erations, it appears that the theory of bimeasures plays

a vital part for processes of the type having spectral
functions in R2 , L.e., for the classes of processes
treated in this paper.
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